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FACTORS INFLUENCINGAIRCRAFTGROUND HANDLINGPERFORMANCE

T. J. Yager,Aero-SpaceTechnologist
r_SA LangleyResearchCenter

Hampton,Virginia

Abstract

• Problemsassociatedwith aircraftground handlingoperationson wet runways

are discussedand major factorswhich influencetire/runwaybrakingand cor-

nerlng tractioncapabilityare identifiedincludingrunway characteristics,

tire hydroplaning,brake systemanomalies,and pilot inputs. Researchresults

from studiesconductedat the LangleyAircraft LandingLoads and Traction

Facility,testswith instrumentedground vehiclesand aircraft,and a recent

aircraftwet runwayaccidentinvestigationare summarizedtc indicatethe

effectsof differentaircraft,tire, and runway parameters. Several promising

means are describedfor improvingtire/runwaywater drainagecapability,

brake system efficiency,and pilot trainingto help optimizeaircraft trac-

tion performanceon wet runways.

Introduction

Researchfindingsand technologicaladvances in recentyears have helped

alleviate,but not eliminate,the hazardsassociatedwith adverseweather

aircraftoperations. Conversely,better avionics,growth in aircraft fleet,

airport/runwaycongestion,and economicsare factorswhich have increased

the frequencyof aircraftgroundoperationsduring inclementweather. How-

ever, to a pilot, happinessis still landinginto the wind on a long, clean,

dry runway keepingto a minimumthe numberof challengingsituationswhich

•- can arise during operationson slipperyrunwayswith fluctuatingcrosswinds.

Improvementsin aircraftbrakingsystems,pilot simulatortrainingprograms,

" and runway surfacetreatmentshave tended to increasesafety marginsbut

-- weather-relatedaircraftaccidentsstill occur such as those last year at
I

Washington,D.C., Boston,and New Orleans. Unpredictableand rapidly
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changingweatherconditionsthat may be encounteredat a given airport further

._ complicatethe problemsassociatedwith aircrafttakeoffand landing,maneuversw-J ,_ •

: For ground op':rationsunder varyingrainfallconditions,a large number of
f.
.- interactingrunway,aircraft,and atmosphericvariables,along with pilot

,_"" technique,combineto influencethe level of aircraftrunway performance. A
..

_ need exists for timely recognitionand properassessmentof these parameter

combinationsthat can produce inadequateaircraftbrakingand directional

controlperformancefor a given wet runway situation.._,"

i
!_........ W.it_£he in±ro.ductto_._flarvaeand fast jet transportsinto airline ser-

_ vice in the late 1950's,variousresearchefforts 1 to 27 have been directed

towardsevaluatingthe effectson aircraftrunway performancedue to

differentrainfallrates, runway characteristics,tire features,and brake

system operationalmodes. Findingsfrom studiesconductedat the Langley

L AircraftLandingLoads and TractionFacility,tests with instrumentedaircraft

2 and ground vehicles,and a recentaircraftwet runwayaccident investigation

are discussedin the followingsectionsof this paper. In addition to showing

.i the effects of s_veral pavement factors and defining the principal causes of,°

:'; wet pavementtire frictiondegradationand brake systemperformanceanomalies,

severalpromisingapproachesare identifiedto help retain adequate tire/2:

:_ pavementfrictionand brake systemefficiencyduring aircraftground opera-
...

tions on wet runways.

PavementFactors

',_ Water Depth

_ The major factorsaffectingaircraftwet runway performanceare identified

"._" in figure 1. This figure indicates that runway water depth and tire/pavement

, drainagecapabilitycombine to define the frictioncoefficientavailableto

_,_

.;_ help meet the aircraftstoppingand steeringrequirements. For low rainfall

1983019708-TSA04
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rates and good drainageconditionsthis availabletire/pavementfriction

coefficientmay remain high; however,for high rainfallrates and poor

drainageconditions,the availablefrictioncoefficientcan drop drastically,

especiallyat the higher aircraftground speeds. To help promotewater

drainage,most runwaysare constructedwith a cross slope or crown and

coarse,highly textured_urfacefinishesare applied. In general,runway

water buildupor surfacefloodingthat occurs during periodsof precipitation

is directlyrelatedto the rainfall intensity,the surfacemacrotexture

(coarse,large-scale,surfaceroughness),the runway cross slope, and to some

extent, the magnitudeand directionof surfacewinds. Pavementfloodingis

definedas the depth of water that completelycovers the top of all surface

asperities. Surfacewinds have been found to affect water drainagepath

lengthsin the flooded portionsof the runway and, dependingupon the wind

magnitudeand direction,the amount of surfacewater can change from that

occurringon a calm day. 13 From data collectedduringa comprehensive

Texas TransportationInstitutestudy describedin reference 10, a relationship

was establishedbetweenrainfallintensity,surfacemacrotexture,pavement

cross slope,and water drainagepath lengthwithout the presenceof surface

winds. This relationship,given in figure 2, can be used to calculatethe

rainfallintensityrequiredto initiatefloodingin typiualaircrafttire

paths on a runwaysurfacefor a calm day.

The data shown in figure 2 representthe calculatedvariationin rainfall

rate required to flood to within 4.57 m (15 feet) of the runway centerline.

The main gear tires of a B-767 transportairplanewould be near this distance

from the runwaycenterlineif the airplanewas travelingdirectlydown the

centerline. Calculationswere m_de for five differentcross slopes each

havinga similarrange of macrotexturedel,ths. In g_neral, the figure shows

' 1983019708-TSA05
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the increasein rainfall rate needed to flood the surface as a functionof

cross slope and macrotexturedepth. If the depth of pavementmacrotexture

is small, such as observed in some rubber-coatedrunway touchdownareas,

rainfallintensityrequired for flooding is low despiteappreciablecross I

slope values. Similarly,the chance of reachingflooded surfaceconditions

for a given rainfall intensityincreaseswith decreasingcross slope. In

addition,it can be shown that as the distancefrom the runway centerline

(apexof crown) increases,lower rain rates may produce surfaceflooding.

Texture

Variousresearchstudies28-30 have identified%wo distincttexture

classifications,namely,micro- and macrotexture,_ In general,microtexture

consistsof the fine, small-scale,surfacefeaturessuch as those found on

individualstone particles,whereasm_,crotextureencompassesthe coarse,

large-scaleroughnessof a pavementsurface-aggregatematrix. Under rain-

fall conditionssufficientto initiatefloodingon runway surfaces,the

bulk water drainageeffectivenessof the surfaceis dependenton macrotexture

characteristics.Based on numerousmacrotexturedepth measurementstaken

duringseveralresearchprograms9 and 28 on a wide varietyof runway

pavementtypes and conditionsusing both the grease sampleand sand patch

measurementmethods, surfaceshave been classifiedinto the five major

pavementgroupsor classes shown in the table of figure 3. A general

descriptionof the differentcategorizedpavement types is given with class

I pavementsurfaceshaving the highestmacrotexturedepth values and class

V surfaceshaving the lowestmacrotexturedepth values. Since the potential

for dynamichydroplaning,which is describedin the tire friction perform- !

ance section,varies inverselywith surfacemacrotexture,class I pavements

are identifiedas having the least hydroplaningpotenti_lwhereas class V

1983019708-TSA06
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,'.- pavementsare consideredto be the most susceptible. Using this pavement

- classificationsystemas a guide for runway surfaces,airportoperatorsshould
,-

. be encouragedto installclass I or II pavementsurfaceson runwaysand if

- periodicmacrotexturedepth me,_surementsindicatethe runway surfaceis

approachingthe class IV category,correctivesurfacetreatments,such as

- ' grooving or rubber removal programs, should be implemented. It is also

recommendedthat if a runway or portionof a runway surfaceis determined

; to be within c'ass IV or V, adequateand timely notificationshould be given

"/_- ..... to pil'ots particularly during wet weather aircraft landing and takeoff

'.'. operations.
l

vi: Although class I pavementshave been proven to minimizewet runway

:_,, frictionproblems,one recent runway installationcreatedanother problem

•-._. under dry surface conditions which has since restricted aircraft operations

,: to takeoffsonly. The photographsin figure 4 illustratethe extent of a

': tire tread abrasion problem which occurred during three aircraft landing

, tests on an asphalt-rubberchip seal overlaysurface. This operationalprob-

"!.',. lem is attributed to the sharp, multi-edged, exposed, stone chips used in

- the overlaymix combinedwith the relativelylow dry surfacefriction
',7 .....

," ..... capability.

:; Contaminants 1-" L • •

,: The effect of surfacewater and rubber contaminantson vehiclestopping

.i_ capabilityand tire frictionperformanceis shown in figure 5. This eval-

"_. uation was performed with the I_SA-developed diagonal-braked vehicle (DBV)

:. shown in the photographin figure 5. The brake system diagram illustrates

_j,_ the modificationmade to implementstableand controlledvehicleperform-

Iance during the frictionmeasurementsat high speed with two diagonalwheels

locked and the remainingpair free rolling (unbraked). The DBV wet/dry

stoppingdistanceratios depicted in the bar graphs for differentrainfall J
- !

......., . ..........._........... _ ._'--'_y..........................__ m.....-_,.,,._......., ._................_ ,..,

1983019708-TSA07



; ORIGINAL PAGE IS
: OF POOR QUALITY
: 6

ratesand surfacetypes were obtained from test runs conductedat the same

distanceoff runway centerlinewith brake applicationspeed from 98 kFa/h

"; (60 mph) down to a complete stop. Measurementsof surfacewater depth and

• DBV stoppingdistanceduring differentperiodsof rainstormactivityon an

,. ungroovedconcreterunway with a I percentcrown reveal a direct relation- i

•". ship betweenaveragewater depth and stoppingdistance, As rainfallrates

increase,greaterwater buildupon the runway surfaceoccurs which decreases

'. tire frictionperformanceas reflectedin the increasedDBV wet/dry stopping

-" distanceratios. A further increasein runway slipperinesswas found near

"._. the end of the runwaywhich was contaminatedby rubber depositedduring

• aircrafttire spin-upfollowingtouchdown. The buildupof the rubber coating
._.

_- on runway surfacestends to reduce pavementtextureand hence, dee,"adetire

o frictionparticularlyunder wet conditions. The cross-hatchedDBV stopping

- -. distanceincrementshown in figure 5 illustratesthe effectsof rubber

contaminationon the ungroovedconcreterunway slipperinessmeasurementsfor

. differentrainfallrates. Also includedin the figure are comparableDBV

•- measurementsmade on other groovedand ungroovedrunwaysunder artificially

- wetted (truck)conditionswhere the averagewater depth was 0.5 mm (0.02 in.).

, The longerDBV wet/dry stoppingdistanceratios measuredon the ungrooved

asphalt runwayscompared to the concretesurfacesare the result of lower

"_i surfacemacrotexture. Fortunately,successfulmethods 31 have been developed

,: to remove the rubber depositson runwaysurfaces using high pressurewater
c

..-_-Jnow-_ap__ airports regularlyschedal_-runw_y-_'obt_e_"rel_o9_ltFeat-' ""

ments.

' Tire FrictionPerformance

Viscousandpynamic HYdrgp]aning

:i During aircraftground operationsin wet weather,a water removalor

J drainageproblem is createdat tire/pavementinterfaces. The runway surface
i'

'I
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';' water encounteredby the moving alrcraft tires must be rapidlyexpelled fromT,

,._.:• the tire/pavementcontactarea or the viscousand dynamicwater pressures

" that build up with increasingground speed will significantlyreduce tire

" fr_ctionperformance. Researchstudies 28-30 have shown that the slope of

a tire friction-speedgradientcurve is primarilya functionof the surface

- " _crotexture, and the magnitude of the friction at a given speed is related
r-

:';: to the surfacemlcrotexture. Hence,an assessmentof both surfacemicro- and

.'. _nacrotexturecharacteristicsis necessaryto fully relate tire friction

"_ performanceto pavementtexture.

The principalforms of these wet pavementtire frict;onlosses,namely,

c viscousand dynamichydroplaningand revertedrubber skidding,are illustrated

.:. in figure 6. The speed regime,pavementand tire condition,and tire operating

T mode that contributeto loss in tire frictionare identifiedtogetherwith

:-"_ the factors that tend to alleviate their occurrence. Viscous hydroplaning

:'. or thin-filmlubricationresultsfrom the inabilityof the tire to penetrate

"_ and disrupt the very thin residualfluid film left on the pavementafter the

.. majority of the trapped water has been displaced from the tire footprint.

='_ In this case, the pressurebuildupwithin the tire/pavementinterfaceis due

to fluid viscous properties. Smooth tires operatingon wet smooth pavements
'T

- are particularlysusceptibleto this type of tire hydroplaning.

- During dynamic hydroplaning, a buildup of hydrodynamic pressure between

_." tire and flooded pavementoccurs as the square of vehiclespeed. 2 When this

.... hydrodynamic pressure exceeds the tire-pavement bearing pressure, a wedge of

, water penetratesthe tire contactarea and the tire footprintis partially

.: or totallydetachedfrom the pavementsurface. Under total dynamichydro-
C,

._ planingconditions,tire frictioncapabilityis reduced to near zero because

" of the inability of the fluid to support significant shear forces. It should

£'f

' .... ...............'................'.........983019708TSA09
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be noted that for many wet paver_ntaircraft4._peratlons,reducp.dtire friction

performancemay occur from both viscousand dynamicfluid pressurebuildup

resultingin combinedviscous/dynamichydroplaning. 13

The contactpressuredeve_.opedbetweentire tread and pavementestablishes

tileescape velocityof bulk wate- drainage from beneathtiletire footprint.

High pressuretires can expel surfacewater more readilyfrom the footprint

that low pressuretires. When the aircraftground speed equals or exceeds

the escape velocityof water drainagefrom the footprint,chokedwater flow

occurs. The tire has now reachedthe state of total dynamic hydroplaning.

Test results2, 12, and 13 indicatethat the criticalaircraft ground speeds

requiredfor this total hydroplaningconditionto occur on flooded (runway

water depth is greater than tire tread goove depth) pavementswith an unbraked

tire are approximately:

Spin-down (Rotatingtire) speed, knots = 9 _/InfILpressure,psi

and

Spin-up (Nonrntatingtire) speed, knots = 7.7 _/infl.pressure,psi

For the nonrotatingtire case (as at aircrafttouchdown),Langleytrack test

resultsshown in figure 7 illustratethe delay in tire spin-upfollowing

touchdownon a floodedsurfaceuntil the test carriagespeed decreasedto

approximately93 knots. It is importantthat pilots be aware that the

lower hydroplaningspin-upspeed, rather than the high hydroplaningspin-

down speed, representsthe actual tire situationfor aircrafttouchdownon

floodedrunways.

RevertedR_ubber_S_ki_dding

The third form of tire frictionloss, rewrted-rubber skidding,is

named for tileappearanceof the tire tread skid patch after a prolongedlocked-
J

is believedthat friction-generatedheat within the skidding I
wheel skid. It

tire/pavementcontactarea is sufficientto producestealnand cause the tire

_.__"_ .......i.... ___ _" _-" • ..--" i ¸ ......
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i" tread rubber to revertback to its uncuredstate. 12 and 18 The soft gunwny

:_ revertedrubber forms a seal around the tire footprintperipheryand the

entrapped steam and water significantly reduce brakin.q and cornering capabili-
)-

- ty. This hypothesiswould also explain the distinctive(steamcleaned)mark

= left on the pavement in the tire path as shown in the aircraft accident

. photographsin figure 8. Evidencefrom this aircraftwet runway skidding

:. - accident as well as several others indicates that once started, reverted

rubber skiddingresults in very low tire/pavementfrictionwhich persists

: down to very low speeds. With tire operationin a nonrotatingmode, the loss

: of tire corneringcapabilityfor directionalcontrolis possiblya greater

" problem,consideringrunway geometry,for pilots to overcomethan the low

_:. braking performance. Providing and maintaining runway surfaces with high

2.
macrotextureand good drainage characteristicsis very importantin allevl-

ating the occurrence of this aircraft tire friction loss as well as those

; associatedwith tire hydroplaning.

" Aircraft LandingPerformance

-" During aircraftground operations,pilot techniquesand controlinputs

: togetherwith certainaircraft parametersincludingaerodynamics,engines,

:. brake system, and landing gear configuration interact to determine how much
,y;

, of the availabletire pavementtractionis utilizedfor stoppingand direc-

tional controlpurposes. The influenceof speed, tire tread condition,and

_. pavement surface macrotexture on aircraft braking performance is illustrated

in figure 9. These data were obtained during instrumentedCV990 aircraft.....

.. braking tests 8 conducted at NASAWallops Flight Center owl a unique research

: runwaywhich featuresa varietyof pavementsselectedto providea wide range
;

of surface macrotextures. A portion of each of these different pavementt;

:_" was modifiedwith installationof 6 x 6 x 25 mm (0.25x 0.25 x l-in. pitch)

. transversegrooves. For dry concrete conditions,the measuredaircraft

.7

_i_''; . ...... . ...i' ..LL_'L_ . . . ,_.__:...... LLL: ,_L ___ i _ " _ i, -
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:. effective braking frlr-tion cnefficient ]_.wl indicated In figure 9 dld not

" vary 51!]nlflclntlywith tire tread de_lqn ar surfaceconflquratlonbut _ome

- decreasewan observedwith increar.lngspeed. The oi'fectof speed waF,i_uch

'_ _re pronounced on the w,_t ungraaved surface, and these data indieato tllat

-. .----_4_ra,_u_4_IL4zlco_vJ.de_d_a_Ll.gJEIJ_tJ__!Q.t__Ijnpr_vem_ntcomparp.dwi th th,._

s_oth tire data. The calculated hydroplaninq spin-down speed of 114 knots .7

i" noted in figure 9 is based on a tire inflationpressureof 1103 kPa (160 Iblin2)

- On the slmilarlywetted groovedconcrete,the transverserunway grooves pro-

_- duced substantiallygreater aircraftbrakingfriction levelswith both tire

- treads than were shown by the wet ung_-oovedsurfacedata. These aircraft

2 brakingperformancedata on wet runwaysalso suggest that the effects of t_,re

- tread wear are secondaryto the effectsof surface9reevingb_cause of the

:. greatly enhanced tire/pavement water drainage capability available on grooved

i runways.
..

" Anti skid Behavior

The brake system is the primarymeans for stoppingthe aircraft. The

developmentand use of antiskid controlsystemsdesigned to minimize
,;

.- tire skiddingand preventwheel lockupsduring brakinghas substantially

: enhancedaircraft brakingperformanceand stoppingcapability. Host antiskid

: systemsemploy touchdownand locked-wheelprotectionfeatures in the brake
.!"

•" .. control logic circuitsto preventbrake pressureapplicationto a nonrotating

wheel as at touchdownoe as the resultof low tire/pavementfriction conditions

causing wheel lockup. The proper performance of these sy:;tems, however,r
p,

...'._. depends on accurate inputsof aircraftground speed and i_stantaneousbraked

wheel angular velocity data coupled with efficient mechanisms for reducing

- and reapF,lylng hydraulicpressureto each wheel brake unit. Effective

" antiskid brake control operation also requires positive wl_eel spin-up

T
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i.C acce]eratlon_after tire touchdownand fo]]owinqbrake pressurereleasedur_

: inq anti,kidcy_-llnq.Since whe_l _pln-upcharact_r'l,;t|c,;are dlr_,ctlyin_

: flm_ncedhy the friction!.)aneratedb(_l:_,_enthe tlr_ amidthe runw_.J.r_kt)

controlbehaviorcan be slonlilcantlycompromiseddurinq aircraftoperatlon_
'" i
- under adverseweather conditionsand at high ground speed._ Timeprecisionof
,t.' - -- , m i

' brakedwheel controlby the anti._kiddeterioi'ateswhen low tire traction

- causes low wheel spln-upaccelerations. Certainpilot inputs,such as full

"' brake applicationbefore the wheels reach synchronousaircraft speed, can

_: also adverselyaffect brake controlbecausethe logic circuitsdo not
':

14
receivet_hecorrectaircraft ground speed referencevalue.

Aircraft Test Results

_.:. An exampleof such anomalousantlskid brake controloperationfollowing

touchdownis given in figure 10. These time historydata collectedduring

: wet runway tests with a large jet transportaircraft 32 illustratethe anti-

skid brake controlresponseof the inboardwheels on a four-wheelbogie main

landinggear to brake applicationsthat occurred prior to and after full

wheel spin-upduring landings. For brake applicationprior to full wheel

spin-up,it is apparentfrom figure 10 that the ground speed referenceassumed

by the skid-controllogic circuitfor the front wheel is wcll below the

._ actual aircraftspeed. The low wheel spin-upaccel_ratlonsfollowingbrake

pressurereleaseduring each brakingcycle, combinedwith the low ground

speed reference,preventedthe front wheel from attainingsynchronousaircraft

speed until approximately30 secondsinto the landingrollout. By that time,

the aircraft speed had decreasedsufficientlyto cause high wheel spin-up

_. accelerationand the proper ground speed referencesignalwas acquired.

Subsequently,brP,ked wheel nM)tionwas satisfactorilycontrolleddown to the
J

aircraftstop _oint. The much faster recoveryof aircraftsynchronousspeed 1

9830 9708-TSA 3
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--. by the mar tanfl_mwhp.el(_iqurn].())rc:fln_:t,_th(_b,,ni_fit_)I"path clearJn.q

-. by thn front tai_dp,m whet_.lwl11(:hl)_'odu(:,,_,a l_r;s_,'l'ipp_ryr.L,rfac(,f()rthe

l:ra I I irl!t wh(_el.

." . .................... _.].qLIr_ l() i_]:_(JJnclud_ wh_c,l an!-It_lar v,o'l_H:ity diaL_l(_btaln_.d durinfl a

: '_econdaircraft landiw!in whIcI_br_;_kef;w(;r(;apl)liedal'terthe Nlhe_els
%

reachedFull spin-up. Th_se braF,{,.dwh_.elresponsessuggestthat the pilot

i: ' should delay brake applicationduring landingson wet runways to allow the

,, skid-controllogic system sufficienttime to acquirean accurateground

speed reference. The considerablyreducedtire skiddingexperiencedduring

:- this landingcomparedto the data collectedwhen brakes were applied_arly

•: _. suggestsimprovedaircraft stoppingperformanceand reducedtire wear.

• shouldbe noted that a comparisonof the brakingeffect_,,;. emons_ated

._ by the two landings is not justifiedbecause the t_.;_ were ,nadeat differerv_

•"_ aircraftgross weights and brake applicationspeeds.

. Comparativeaircraft brakingeffectivenessdata is presentedin figure

; 11 for three landipgtests conductedwith a B-727 aircraft equippedwith an

,:. 22" antiskidbrake system. These test results, which show the variationin

_- effectivebrakingfriction coefficientwith speed for one dry and two wet

' runway landingcases, illustratethe significanteffect that tire/runway
C

. friction"andbrat(edwheel controlhave on aircraftbraking performance. For

" the dry and wet runway landings (casesI and 2) conductedwith sufficient .

tire/runwayfrictionto permitbraked wheel controlwithout lockingthe wheel

;: a continuous increasein frictionwas measuredas the aircraftspeed decreased.

: As expected,significantlyhigheraircraftbrakingeffectivenesswas obtained

; during the dry runway landingcomparedto the wet runway landing. The

.. secondwet runway landing,case 3, w_s made with an average surfacewater
i

:. depth abo_t twice that measured for case 2. This great(,rrunwaywater depth !

i983019708-TSAI4
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: resultedin much lower tire/runwayfrictionand a11 four main gear wheels
t

lockedfollow!ngbrake application. The subsequentskidding produceda

revertedrubber patch on the tire such as shown in the photographin figure

: 11. With the developmentof revertedrubber skidding,the aircraft braking

effectivenesswas substantiallyreducedwith littlechange in friction

:-- . throughoutthe landingspeed range. The calculatedaircraftstopping distance

•" for case 3 is anproximatelytwice that found for case 2. Of equal concern,

a locked (nonrotating)wheel cannot providestabilizingforces necessaryfor

directionalcontrol. Analogouslow tire frictionresultswere also obtained

during Langleytrack tests 6 when prolongedtire skiddingon a wet surface

; producedrevertedrubber in the tire contactpatch.

Additionalinsightinto the lackof directionalcontrolas well as

revertedrubber skiddingcaused by nonrotatingtires was obtainedduring a

recent investigationof a T-38 aircraftlandingveeroffaccidentwhich

occurredat night during a moderaterainstorm. A left-to-rightcrosswind

componentcaused the pilot to land the aircraftat a crab angle slightlyright

of runway centerline. The accidentaircraftlandingrunout track, identified

by white marks visibleon the runway surface,is shown in figure 12 together

with photographsof the ungrooved,low textured (classV), concreterunway

surface,the main landinggear (MLG) tire skid patches,and the damagedaircraft.

Fortunately,the pilot escaped injuryeven though the nose and right main

landinggear failed and the right wing tip was shearedoff subsequentto the

aircraft leavingthe right shoulderof the runway,traversinga relatively

.: soft soil surface,and coming to rest on an intersectingpaved taxiway. Dur-

.... _ng the investigationwhich followed the accident,the estimatedaircraft

: touchdownpoint near the runway intersecL_,_was found to be a water ponding

area with water depths measured up to 13 mm _0.5 in.). Additienalevidence

I

N
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- and factorswhich tend to supportthe belief that possiblythe MLG tires did

.:. not spin up followingtouchdownincludethe fact that tileaircraft touchdown

" speed was significantly higher than the calculated tire hydroplaning spin-up

'." speed of 119 knots, the surfacewhite marks from the MLG tires commenced

- when the aircraftexited the deeplyflooded portionof the runway and con-
,_. J

_.. tinued to the runway shoulderedge, and only one skid patch, showingevidence
,
2_..... of tread rubber reversion in the aft portion, was found on each MLGtire.

: Knowingthat he was landingon a wet runway,the pilot did not apply wheel

--' braking during "the aircraft runout on the paved runway and yet, reverted

"i': rubberskidding evidentlyoccurred. Inspectionof the aircraftwheel brake

assembliesrevealedno abnormalitiesand no indicationof draggingbrake

X.

._ operation. In all other documentedaircraft accident/incidentcases involving

reverted rubber skidding, the pilot had employed wheel braking during the

.; aircraftrunoutwhich contributedto lockedwheel operation.
-.

.;-. Concl udi ng Remarks

": The principalweather, aircraft,runway,and pilot factorswhich combine

to affect aircraftground handlingperformanceduring wet runwayoperations
.,

- have been reviewed. This review included: identifying a relationship estab-

• lished betweenrainfallrate and runwaywater depth; definingthe major forms

of tire friction losses; classifying pavement surfaces by macrotexture depth

"_. and hydroplaningpotential;and evaluatingantiskidbrake system performance.

• Research results from studies conducted at tile Langley Aircraft Landing Loads

_" and TractionFacility,testswith instrumentedground vehiclesand aircraft,
.)

: and a recentaircraftwet runway accident investigationwere presentedto

-_ illustratethe effectsof various parameterson aircraftbrakingeffectiveness.
.j

:" These findingsunderscorethe complexityand variabilitywhich characterizes

] 9830] 9708-TSB02
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ai,.craftwet runway operations. Researchefforts,however, have revealed

severalpromisingmeans, such as the use of runwaygrooving and frequent

rubber removaltreatments,which offer improvedtire/runwaywater drainage

capabilityand hence, contributeto safer aircraftoperations. In reviewing

the factors influencingaircraftwet runway performance,severalapproaches

or needs have also been recognized to a11eviatethe severityof the

problemincluding: continuedupdatingof pilot educationand trainingproce-

dures; implementationof proceduresfor monitorings11ppery runway conditions

and identifyingseverityto the pilot; improvementin antiskid brake system

performance;and prompt remedial treatmentof runway surfacedrainage problems.
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